Industrial metalworking

Performance components for use in metalworking and forming applications

Advanced performance components for metalworking processes

The metalworking industry is constantly undergoing change driven by the demand for superior performance products to provide improved productivity at lower cost. As a global supplier of metalworking fluid components and with our broad experience in this field we have an understanding of the issues faced and are committed to offering our customers innovative and creative solutions.

As technologies and working practices develop, metalworking fluid formulators, as well as base fluid and additive suppliers, must adapt quickly to support the advances taking place. We recognize these changes and the diverse demands placed on the metalworking fluid formulation and have developed a broad range of advanced performance products with the following functionalities:

- Base oils for neat, semi-synthetic and synthetic metalworking fluids
- · Lubricity boosters
- Emulsifiers

- Fatty acids
- · Corrosion inhibitors

Base oils

Our range of Priolube™ and Emkarox™ base fluids provide outstanding lubricity and cooling and our emulsification portfolio offers the formulator emulsion stability, tramp oil rejection and extended fluid lifetime.

									Colo	r
Product name	Chemical description	Kinematic viscosity at 40°C (mm²/s)	Kinematic viscosity at 100°C (mm²/s)	Viscosity index	Pour point (°C)	Cloud point (°C)	Flash point COC (°C)	Density at 20°C (g/ml)	Descriptor	Value
Emkarox™ HV26	Polyalkylene glycol	26,000	3,000	-	5	77	240	1.09	-	-
Emkarox™ HV45³	Polyalkylene glycol	45,000	6,500	-	7	78	240	1.09	-	-
Emkarox™ VG 1055W	Polyalkylene glycol	1,052	171	284	-24	61	240	1.06	-	-
Emkarox™ VG 130W	Polyalkylene glycol	152	25	197	-32	81	232	1.07	-	-
Emkarox [™] VG 132W	Polyalkylene glycol	131	25	225	-42	59	230	1.06	-	-
Emkarox™ VG 146	Polyalkylene glycol	145	25	207	-45	-	224	0.99	APHA	50
Emkarox [™] VG 330W	Polyalkylene glycol	328	56	239	-30	65	228	1.07	-	-
Emkarox™ VG 681W	Polyalkylene glycol	680	116	274	-30	54	230	1.06	-	-
Perfad™ 3950F	Ester	350	40	166	-20	-	214	0.97	lovibond (1"cell y/r)	>70-9.1
Priolube™ 1407	Ester	84	10	98	0	-	-	-	-	-
Priolube™ 1415	Ester	9	2.8	159	-27	-24	220	0.87	lovibond (51/4" cell y/r)	4.0-0.7
Priolube [™] 1427	Ester	48	9.5	187	-39	-15	300	0.90	lovibond (1" cell y/r)	5.0-1.0
Priolube™ 1428	Ester	22	5	160	-15	<0	250	0.90	lovibond (1" cell y/r)	1.0-2.0
Priolube™ 1435	Ester	41	9	195	-15	-3	290	0.92	lovibond (1" cell y/r)	5.0-1.5
Priolube™ 1808	Ester	35	7	166	-1	0	295	0.92	Gardner	3
Priolube™ 1939	Ester	335	20.2	62	-9	-	276	0.96	APHA	50
Priolube [™] 1968	Ester	100	13	127	5	12	300	0.92	Gardner	4
Priolube™ 2044	Ester	85	12.4	142	-3	-	250	0.92	Gardner	6
Priolube [™] 2101	Ester	46	9.5	187	-47	-	325	-	lovibond (1" cell y/r)	5.0-1.0
Priolube™ 2104	Ester	6	2	177	-26	-	178	-	-	-
Priolube™ 2215	Ester	8	2.7	208	-	-	-	0.90	-	-
Priolube™ 2720	Ester	20	5	143	-51	-	268	-	APHA	300
Priolube™ 3952	Self-emulsifying ester	380	34	142	-36	-60	330	0.94	-	-
Priolube™ 3953	Self-emulsifying ester	360	33	131	-39	-60	330	0.93	-	-
Priolube™ 3955	Self-emulsifying ester	420	41	147	-21	-60	320	0.97	-	-
Priolube™ 3970	Ester	20	4.4	140	-51	-	250	0.94	ASTM D1500	0.5
Priolube™ 3971	Ester	30	5.9	144	-3	-	285	0.96	APHA	150
Priolube™ LL-564	Ester	7	2.5	228	-46	-	189	0.87	-	-
Priolube [™] 1973	Ester	46	8.0	148	-44	-	280	0.90	Gardner	4
Priolube [™] 2087	Ester	320	35	150	-40	-	260	0.92	Gardner	7
Priolube™ 1929	Ester	1,700	125	175	-21	-	310	0.92	Gardner	5
Priolube™ 3986	Ester	47,000	2000	278	6	-	325	0.92	Gardner	5

 $^{^1}$ Inflection Point is the temperature where the rate of weight loss is at its maximum 2 Midpoint is the temperature where the weight loss of the product is 50% 3 Available in neat and water diluted form

⁴ Information given is based on data obtained from similar substances

				TGA				Application				
lodine value	SAP value	Acid value	Inflection	Midpoint ²	Deposits	Falex coefficient		Metalworking			Metal rolling	
(g I ₂ /100g)	(mgKOH/g)	(mgKOH/g)	point¹ (°C)	(°C)		of friction		Neat oils	Semi-synthetic	Synthetic	Ferrous	Non-ferrous
-	-	-	-	-	-	-	-	-	-	•	-	-
-	-	-	-	-	-	-	-	-	-	•	-	-
-	-	-	-	-	-	-	-	-	-	•	-	-
-	-	-	-	-	-	-	-	-	-		-	-
-	-	_	-	-	-	_	_	-	-	•	-	-
3	-	0.3	_	_	-	_	-	•	-	-	_	-
		<u>.</u>	_	_				_			_	
-	-	-	-	-	-	-	-	-	-	•	-	-
-	103	20	-	-	_	-	-	-	•	•	-	-
-	-		413	388	Trace	0.048	1,825	-	-	-	-	•
68	143	0.2	-	-	-	-	-	•	•	-	-	-
84	182	1	441	431	Slight trace	0.057	1,200	•	-	-	•	-
88	188	2	-	-	-	-	-	•	•	-	-	-
89	193	1.5	-	-	-	-	-	•	•	-	-	-
7	242	1	-	-	-	-	-	•	•	-	-	-
0.5	214	0.05	-	-	-	-	-	-	•	-	-	-
45	180	2	443	433	Trace	0.065	1210	•	•	-	•	•
44	180	9	447	429	Slight trace	0.052	1,050	-	-	-	-	•
86	182	0.5	323	361	Slight trace	0.057	1,200	-	-	-	-	-
4	173	0.5	433	430	None	-	-	-	-	-	-	-
-	-	0.1	-	-	-	-	-	-	•	-	-	-
-	-	0.05	364	346	None ⁴	0.0594	1,240	-	-	-	-	-
1	134	33	-	-	-	-	-	-	•	-	-	-
1	148	18	-	-	-	-	-	-	•	-	-	-
1	142	50	-	-	-	-	-	-	-	•	-	-
0.5	310	0.05	364	346	None	0.059	1,240	-	-	-	-	•
0.5	330	0.05	399	382	None	0.046	1,330	-	-	-	-	•
30	-	1	-	-	-	-	-	•	•	-	-	-
2	174	0.05	-	-	-	-	-	-	-	-	-	•
30	260	0.5	-	-	-	-	-	-	-	-	-	•
32	310	0.1	-	-	-	-	-	-	-	-	-	•
12.5	181	0.01	-	-	-	-	-	-	-	-	-	•

Lubricity boosters

In a world where chlorinated paraffins have become less acceptable through legislation or self-regulation, high molecular weight complex esters offer a viable alternative. We have developed a range of complex esters under the PriolubeTM brand designed to help you, the formulator, create products which meet the challenging demands of the metalworking industry.

		Kinematic	Kinematic			Cloud		Cold	or	
Product name	Chemical description	viscosity at 40°C (mm²/s)	viscosity at 100°C (mm²/s)	Viscosity index	Pour point (°C)	point (°C)	Flash point COC (°C)	Descriptor	Value	Density at 20°C (g/ml)
Perfad™ 8100	Ester	1,100	64	-	-29	<-55	292	APHA	5	0.97
Perfad™ 8400	Ester	3,510³	151³	-	-6	-	280	-	-	0.97
Priolube™ 1847	Ester	1,040	85	167	-24	-50	300	Gardner	4	0.95
Priolube [™] 1851	Ester	495	49	153	-36	-34	300	Gardner	4	0.95
Priolube™ 1929	Ester	1,700	125	175	-21	-60	310	Gardner	5	0.92
Priolube [™] 2087	Ester	320	35	150	-40	<-60	260	Gardner	7	0.92
Priolube™ 3986	Ester	47,000	2000	278	6	-	325	Gardner	5	0.92
Pripol™ 1017	Dimer acid	2,400	-	-	-15	-	-	Gardner	5	-
Pripol™ 1022	Dimer acid	1,834	-	-	-15	-	-	-	-	-

¹ Inflection Point is the temperature where the rate of weight loss is at its maximum

Emulsifiers

Our emulsifier technologies can be used to create a stable and predictable formulation, and offer high emulsion stability in use.

	Chemical		Flash point	Density at	Cloud	HLB	Application		
Product name	description	Color	COC (°C)	20°C (g/ml)	point (°C)	value	Metalworking	Metal rolling	
Priolube™ 1407	Ester	Yellow	215	0.96	8	-	•	•	
Priolube [™] 594	Ester	Colorless	300	0.96	-	2.8	•	-	
Pluvia™ S 80	Ester	Amber	148	1.001	-	4.3	•	•	

¹ Density at 25°C

 $^{^{2}\,\}text{Midpoint}$ is the temperature where the weight loss of the product is 50%

³ Dynamic viscosity (mPa.s)

				TGA		Falex		Application		
lodine value (g l ₂ /100g)	SAP value (mgKOH/g)	Acid value (mgKOH/g)	Inflection point ¹ (°C)	Midpoint ² (°C)	Deposits	coefficient of friction	Falex Fail to load (lbs)	Metalworking	Ferrous metal rolling	
95	-	<1.4	-	-	-	-	-	•	-	
7	-	2	-	-	-	-	-	•	-	
4	234	0.1	-	-	-	-	-	•	-	
3	225	0.1	-	-	-	-	-	•	-	
32	160	0.01	-	-	-	-	-	•	-	
30	260	0.5	436	417	Slight trace	0.032	1400	•	•	
12.5	181	0.01	446	445	Trace	0.062	1130	•	•	
95	198	193	455	411	Trace	0.06	1480	-	•	
-	199	193	452	407	Trace	0.06	1300	-	•	

Fatty acids and corrosion inhibitors

Our fatty acid products are widely used in industrial applications and have multiple functions. When neutralised with an alkanolamine, they can be used as an effective corrosion inhibitor.

Product name	Physical form	Acid value (mgKOH/g)
Priacid™ A95	Waxy solid	60
Pripol™ 1017	Liquid	193

About us

The Energy Technologies business in Cargill Bioindustrial creates, makes and sells specialty chemicals and additives for the global energy market. Working in close collaboration with our customers, we apply sustainable concepts and deep scientific expertise so that together we can efficiently power the world of tomorrow.

At our core, we are experts in synthetic ester and polyalkylene glycol chemistries, taking products from lab scale through to full manufacturing. Investing in the development of new chemistries allows us to support our customers in meeting new industry challenges.

For those who dare to imagine a brighter future, we establish long lasting relationships and create bespoke industry solutions through our integrated research & development and global manufacturing capabilities. Being both global and local, you have direct access to our network of technical experts. We look forward to talking to you.

Further information

Cargill Bioindustrial sales and distribution are coordinated through an extensive worldwide network of technical and commercial experts. For further information or guidance please contact us:

energy_technologies@cargill.com

Non-warranty

This document is provided for your information and convenience only. All information, statements, recommendations and suggestions are believed to be true and accurate but are made without guarantee, express or implied. WE DISCLAIM, TO THE FULLEST EXTENT PERMITTED BY LAW, ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE and FREEDOM FROM INFRINGEMENT and disclaim all liability in connection with the storage, handling or use of our products or information, statements, recommendations and suggestions made by Cargill. All such risks are assumed by you/user. The labelling, substantiation and decision making relating to the regulatory approval status of, the labelling on and claims for your products is your responsibility. We recommend you consult regulatory and legal advisors familiar with applicable laws, rules and regulations prior to making regulatory, labelling or claims decisions for your products. The information, statements, recommendations and suggestions contained herein are subject to change without notice. Tests conducted by Cargill labs unless otherwise noted. ©2024, Cargill, Incorporated. All rights reserved. 2069B/ET/0624/4/EN

